A Seven-Course Classroom: Different Uses of a Flexible Classroom Space

Aaron W. Johnson, Cynthia J. Finelli Electrical Engineering and Computer Science

Background

- Studio classrooms: Students sit in small groups at fixed tables instead of in front-facing rows [1-6].
- Conflicting evidence: Teaching lecturebased classes in studio classrooms...
- Encourages instructors to adopt more student-centered pedagogy [7-11].
- Has negative effects on student learning outcomes [10].
- Flexible classroom: Easily reconfigured between front-facing rows (like a typical lecture hall) and small groups (like a studio classroom).
 - Effects on faculty teaching and student learning have not been rigorously examined [6,11-13].

Wednesday

Class 1

Class 2

Class 3

Class 4

CAEN staff

Instructor

Instructor

sets SG1

sets SG3

sets SG2

Research Questions

- 1. How do flexible classroom spaces afford responsive teaching?
- 2. How does room layout influence students' perceptions of activities?
- 3. How do lecture-based courses, active learning courses, discussion sections, and co-curricular activities co-exist in the same space?

This poster

Class	Instructors	Student Enrollment	Class Level	Pedagogy
1. Introduction to Circuits	Α	41	Lower	Lecture/Active learning
2. Introduction to Engineering (IOE lecture section)	B & C	41	First-year	Lecture
3. Capstone Design (BME)	D & E	39	Upper	Mostly active learning
4. Introduction to Materials	F	46	All	Mostly active learning
5. Engineering Mentorship and Leadership	G & H	26	Upper	Mostly active learning
6. Technical Communications	E & J	10	Upper	Mostly active learning
7. Introduction to Engineering (NAME discussion section)	J	20	Lower	Mostly active learning

Findings: Arrangement of Furniture

Monday

Three instructors set the layout for their class—and sometimes for following classes

Class 1

Class 2

Class 4

with one table

moved to middle

of room

5 pseudo-rows, 8 groups, each each with with 2 tables, 9 students and 6 students, with center aisle

1 monitor

CAEN staff sets SG2

Instructor

sets SG3

9 groups, each with 1 table, 5-6 students, 1 whiteboard

Students M-Racing Class 5 may **Students** modify may modify∜

Class 2 used **SG2** layout set by Class 1. Both classes used mostly lecture, but Class 1 used more active learning. Rearrangement would be difficult.

Class 3 used SG1, moving 1 table from SG2.

Friday

Class 1

CAEN staff

sets SG2

Students

may

modify

- Rearrangement would be easy.
- Classes 5, 6, and 7 used SG3 layout set by Class

Class 6

Class 7

Thursday

Usually SG3

(potentially

modified)

Students

may

modify

4. All four courses used mostly active learning.

References

- Jamieson, P. (2003). Designing more effective on campus teaching and learning spaces: A role for academic developers
- International Journal for Academic Development, 8(1-2), 119-133. Oblinger, D. G. (2006). In D. G. Oblinger (Ed.), Learning Spaces (1.1-1.4).
- Chism, N. V. N. (2006). In D. G. Oblinger (Ed.), Learning Spaces (2.1-2.12). Montgomery, T. (2008). Space matters Experiences of managing static formal learning spaces. Active Learning in Higher
- Baepler, P., Walker, J. D., Brooks, D. C., Saichaie, K., & Petersen, C. L. (2016). A Guide to Teaching in the Active Learning
- 6. Knaub, A. V., Foote, K. T., Henderson, C., Dancy, M., & Beichner, R. J. (2016). Get a room: The role of classroom space in sustained 10. Lasry, N., Charles, E., & Whittaker, C. (2014). When teacher-centered instructors are assigned to student-centered classrooms.
- 7. Taylor, S. S. (2009). Effects of studio space on teaching and learning: Preliminary findings from two case studies. *Innovative*
- 8. Brooks, D. C. (2012). Space and consequences: The impact of different formal learning spaces on instructor and student behavior. Journal of Learning Spaces, 1(2).
- 9. Cotner, S., Loper, J., Walker, J. D., & Brooks, D. C. (2013). "It's Not You, It's the Room"— Are the High-Tech, Active Learning Classrooms Worth It? Journal of College Science Teaching, 42(6), 82-88.
- Physical Review Special Topics—Physics Education Research, 10(1), 010116. 11. Granito, V. J., & Santana, M. E. (2016). Psychology of Learning Spaces: Impact on Teaching and Learning. *Journal of Learning*
- 12. Lomas, C., & Oblinger, D. G. (2006). In D. G. Oblinger (Ed.), *Learning Spaces* (5.1-5.11).

Findings: Use of Technology

Instructor uses monitors to project slides All classes 1, 2, 3, 4, 5, 6, 7 Classes 3, 6 Class 7 Classes 4, 5

Students use Students use monitors whiteboards for group for group activities activities

Instructor uses whiteboards for in-class discussions

Future Work

- Room updates to create a "front of the room" space:
 - Relocated monitor, larger white board, new location for front screen
- Future research questions:
 - How is the room used after-hours?
 - Why do instructors use specific classroom configurations and technology?
- Does the classroom flexibility encourage instructors to try new things?

Classroom: History, Research, and Practice. Sterling, VA: Stylus Publishing implementation of studio style instruction. *International Journal of STEM Education*, 3(1), 1-22

13. Gee, L. (2006). In D. G. Oblinger (Ed.), *Learning Spaces* (10.1-10.13).