

in blended (flipped) classroom:

Teaching Electrical Engineering (EE) to non-EE majors Creation of the *flow* **experience in online Self-Assessments** Alexander Ganago, Hyunsoo Kim, Mohammad Rasouli, Brent Vece, Huajun Zhang, and Diana Perpich

Theoretical perspective

The Bloom's taxonomy provides a framework for learning and teaching Analyzing

Applying

Understanding Remembering

(After Bloom, 1956; Andersen & Kratwohl, 2001)

What's blended classroom?

Creating

Evaluating

Analyzing

Applying

Understanding

Use of the lecture time in a traditional classroom

Use of the lecture time in a blended classroom

Applying, etc. is expected to be done by the students after the lecture

Remembering

Remembering and Understanding are expected to be done by the students before the lecture

Before lecture, students read and complete online Self-Assessments on the Readings. Opportunities in the blended lecture include: Conceptual questions ✓ Peer instruction (after Eric Mazur)

 \checkmark Mini-lectures on the hardest topics Demonstrations of real experiments

Creating Evaluating

1 Creating Evaluating Analyzing Applying Understanding Remembering

Self-Assessments vs. HW

Learning via Self-Assessments Student receives immediate feedback

- Momentarily after submission, the student receives reassurance/guidance on the way to mastery
- The feedback arrives when the student is still thinking about the particular problem
- The feedback includes a complete solution = example of winning stragegy
- The student is given 3 tries to solve problems on the given topic, without penalty

The flow experience

- **Pre-requisites for the optimal performance:** Specific goals
- The level of challenge matches the skills
- The feeling of being in control
- Immediate feedback

The optimal conditions for learning are between boredom and anxiety

Skills |

Learning via Homework

- Student received delayed feedback (graded paper)
- At the time of submission, the student does not receive **reassurance** on whether he/ she mastered the material
- The feedback arrives after the student has long forgotten about the particular problem
- The feedback only highlights student's errors but does not show how to correct them
- There is no second attempt to solve a HW problem and still get credit for it

Before the lecture

✓ Monitor students' questions (via CTools' Forums, etc.) ✓ Obtain a complete update (via CTools' Gradebook, etc.) on how the students have mastered the material (for this lecture)

During the lecture

- ✓ Enjoy the freedom:

Requirements for success

Before the lecture

During the lecture

- Be prepared to answer students' questions
- Go beyond the "pre-cooked" presentations

✓ Very robust, sustainable, and reusable online repository for Question Pools and Self-Assessments is necessary; CTools are not perfect ✓ How to assess the effectiveness? Are we fostering intrinsic motivation? ✓ Do students get the *flow* experience?

Acknowledgements: Support from EECS Department and ISL grant

What's for the instructor?

Advantages

✓ Do not worry about "covering all the material" ✓ Instead, focus on the most difficult parts, to help the students learn ✓ Foster student learning by asking conceptual questions

> Discuss interesting applications Explain connections between different parts of the course

Relate theory to experiments via demonstrations

 Create materials for Self-Assessments (a huge investment of time) ✓ Invest time in answering students' questions online ✓ Prepare materials for interactive learning during the lecture time

✓ Monitor the students' engagement in problem-solving activities

Changes & Challenges

Changes

✓ **Pre-Labs online:** Theoretical questions are offered **online** but hands-on questions (show how you will build the circuit, etc.) are still done on paper Self-Assessments and Homework: SA cover the lower 2 levels of the Bloom's taxonomy; Homework targets the higher levels

Homework becomes shorter, because students cover lower levels in SA ✓ The grading scheme is changed: Rewards for SA and participation lead to reduced cost of the exams; the scores for SA "saturate at the top"

Challenges